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Learning Goals and Reading Recommenda@ons
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• thermodynamics concerned with the energy balance of reac@ons 

• kine@cs concerned with the rates of reac@ons 

• iden@fy nucleophilic centers, electrophilic centers, leaving groups  
• compare nucleophilicity of different nucleophiles 
• es;mate stabiliza;on of electrophilic centers 
• es;mate leaving group quality from the pKa values of the corresponding acids 

• formulate subs@tu@on, addi@on, elimina@on reac@ons
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4.1  Reac@on Thermodynamics and Kine@cs



Net Reac@on versus Mechanism
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• net reac@on describes the star@ng materials and the products of a reac@on 
• reac@on mechanisms describes the individual elementary steps of the reac@on 
• catalyst takes part in the reac@on mechanism but is retained unchanged
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Thermodynamics of Chemical Reac@ons
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• Gibbs’ free reac@on energy ΔGR determines whether / in which direc@on the reac@on runs 
• standard Gibbs’ free reac@on energy ΔG°R at standard condi@ons (1 bar, 25°C, 1 mol/L)

• reac;on thermodyamics are concerned with the overall energy balance of chemical reac;ons
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The Chemical Equilibrium
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• equilibrium constant KR is the ra@o of reactant concentra@ons in equilibrium 
• standard free reac@on energy ΔG°R determines posi@on of the equilibrium (at 25°C)

• chemical reac;ons in a closed system progress un;l they reach thermodynamic equilibrium
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Reac@on Enthalpy and Entropy
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• reac@on enthalpy ΔH°R is nega@ve (favorable) if bond energies in products are higher 
• reac@on entropy ΔS°R is posi@ve (favorable) if the disorder within the system increases

• Gibbs-Helmholtz equa;on dissects free reac;on energy into enthalpic/entropic contribu;ons
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Kine@cs of Chemical Reac@ons
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• reac@on rates r = dci/dt describe the change of the concentra@ons ci over @me 
• rate laws describe the rela@on between reac@on rates ri and substrate concentra@ons ci  

• rate laws are differen@al equa@ons solved by integra@on, polynomial/exponen@al func@ons

• reac;on kine;cs describe “how fast” reac;ons proceed from ini;al state towards equilibrium
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Reac@on Order and Molecularity of Chemical Reac@ons
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• molecularity is the number of molecules of each type involved in an elementary reac@on 
• reac@on order is the sum of all exponents of the reactant concentra@ons in the rate law 
• for simple, single-step reac@ons, the molecularity strictly determines the reac@on order

• reac;on rates r propor;onal to reactant concentra;ons according to molecularity 

r4f = k4f · [A]2[C ]

A B

A + B C + D

A + B + C D

r1r = k1r · [B ]r1f = k1f · [A]

r2r = k2r · [C ][D]r2f = k2f · [A][B ]

r3f = k3f · [A][B ][C ] r3r = k3r · [D]

first order monomolecular monomolecular first order

second order bimolecular bimolecular second order

third order trimolecular monomolecular first order

third order trimolecular bimolecular second order
r4r = k4r · [C ]22 A + B 2 Cr2f = k2f · [A][B ]



Rela@on of Reac@on Thermodynamics and Kine@cs
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• ra@o of rate constants of forward and reverse reac@ons determines equilbrium constant K 
• the higher the rate constant of the forward rela@ve to the reverse reac@on, the larger is K

• the thermodynamic equilibrium of a chemical reac@on is a dynamic equilibrium 

A + B C + D r2r = k2r · [C ][D]r2f = k2f · [A][B ]

r2f = r2r

k2f · [A][B ] = k2r · [C ][D]

k2f
k2r

= [C ][D]
[A][B ]

= K



Simplified Reac@on Profiles
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• star@ng materials (S) and products (P) are stable compounds, i.e., local energe@c minima  
• transi@on states (‡) are saddle points (energy hypersurface), local maxima (reac@on profile)

• reac;on profiles are simplified diagrams describing the energy profile of chemical reac;ons 
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Simplified Reac@on Profiles

182

• star@ng materials (S) and products (P) are stable compounds, i.e., local energe@c minima  
• transi@on states (‡) are saddle points (energy hypersurface), local maxima (reac@on profile)

• reac;on profiles are simplified diagrams describing the energy profile of chemical reac;ons, 
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Rela@on of Reac@on Profiles, Thermodynamics, and Kine@cs
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• standard free reac@on energy ΔG° is difference between (S) and (P) energies 
• ΔG° is also the difference between free transi@on energies ΔG‡ of forward/reverse reac@ons 
• reac@on rates k depend on ac@va@on energies EA ≈ ΔG‡ of chemical reac@ons

• reac;on profiles illustrate both thermodynamics and kine;cs of chemical reac;ons
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Reac@on Kine@cs and Thermal Energy
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• at higher temperatures, a larger frac@on of molecules overcomes ac@va@on energy EA 

• both forward and reverse reac@on are accelerated

• molecules have energies according to the Boltzmann probability distribu;on p
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Reac@on Profiles: Thermodynamics and Kine@cs
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• at a lower ac@va@on barrier, forward/reverse reac@on both accelerated by same ra@o 
• catalyst provides new reac@on pathway with lower ac@va@on barrier (same equilibrium)

• a change in the overall ac;va;on barrier will affect the reac;on rates but not the equilibrium
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Kine@c Interpreta@on of the Equilibrium
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• forward reac@on accelerated, reverse reac@on decelerated 
• ra@o of ac@va@on energies and hence equilibrium constant K changes, 

• a more exergonic reac;on will be more shiíed towards the product side
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Reac@ons at Different Temperatures
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• temperature change affects equilibrium itself (Gibbs / Gibbs-Helmholtz equa@ons) 
• change in temperature also changes rela@ve reac@on rates (Maxwell distribu@on)

• change in temperature will both change kine;cs and thermodynamics
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Metastable States
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• for “very high” ac@va@on barriers, forward and reverse reac@on become “infinitely slow” 
• even “high-energy reactants” are “kine@cally stable”, “kine@cally trapped”, “metastable”

• if the ac;va;on barrier is far above the thermal energy, the equilibrium cannot be established
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Hammond Postulate and Polanyi Principle

189

• the difference in standard Gibbs’ free energies develops propos@onally to reac@on progress 
• ac@va@on energies of comparable reac@ons propor@onal to difference in Gibbs’ free energies 
• Hammond Postulate: energe@cally more similar states are also geometrically more similar

• Polanyi Principle and Hammond Postulate for mechanis;cally similar, single-step reac;ons

‡1

‡2

‡3

S

E

Rkt

P1

P2

P3

∆G3f° > ∆G2f° = 0 > ∆G3f°

∆G3f
‡ > ∆G2f

‡ = ∆G2r
‡ > ∆G3f

‡

exergonic

endergonic

“late” transi@on state 
higher ac@va@on energy

“early” transi@on state 
lower ac@va@on energy



Mul@step Reac@ons
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• overall reac@on rate controlled by slowest, rate-determining step 
• overall reac@on order controlled by molecularity of the slowest, rate-determining step  
• typically, the genera@on of the reac@ve intermediate is the rate-determining step (Polanyi) 

• elementary reac;ons are steps between individual local minima in the reac;on profile 
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Learning Outcome
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• reac@on thermodynamics concerned with the energy balance of reac@ons 

• Gibbs free energy decides whether / in which sense a reac;on proceeds  

• standard Gibbs free energy gives inherent energe;cs of a reac;on 

• Gibbs-Helmholtz equa;on describes contribu;on of enthalpy & entropy 

• enthalpy represents sum of bond forma;ons and cleavages 

• entropy represents changes in the degrees of freedom  

• reac@on kine@cs concerned with the rates of reac@ons 

• rela;on of reac;on order and molecularity in the rate-determining step 

• the lower the ac;va;on energy, the faster the reac;on 

• Polanyi principle and Hammond postulate
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